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Abstract. We focus our attention on a class of perturbed integral equations in modular
spaces, by using fixed point Theorem 1.1 (see [1]).
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1 Introduction

In the present work, we focus our attention on a class of perturbed integral equation which

can be written as
u(t) = exp(—t4)fy + | "exp((s — )A)Tu(s)ds (1)

in the modular space C? = C([0,b], L¥) (see [1]), where L¥ is the Musielak-Orlicz space,
fo is a fixed element in LY, A : L¥ — L¥ is a linear operator and T : L¥ — L¥ is
p — c-Lipschitz, i.e. there exists k > 0 such that p(c(Tx — Ty)) < kp(x —y) for any x,y
in L¥ ( p being a modular ). Since p is not subadditive, then the sum of these operators
is not necessarily p-Lipschitz and the convexity of the integral presents a more delicate
problem. Therefore, it is natural in our study to introduce ¢y constant ¢y and assume
some hypotheses on A, T', and b.

For more details about the concepts of the above mentioned modular spaces, we refer the
reader to the books by Musielak [4] and Kozlowski [3].

We begin by recalling the definition below.

Definition 1.1 Let X be an arbitrary vector space over K = (R or @')
a) A functional p : X—[0, +00] is called a pseudomodular if
) p(0) =0 .
it) p(ax) = p(x) for a € K with |a| =1, Ve X.
iii) plax+ By) < p(z)+ ply) for a, >0 and o+ B = 1. If in place of iii) there holds
also:
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iii’) plax + By) < o’p(x) + B°p(y) for a, B > 0 and o® + ° = 1, with an s € (0,1] ,
then the pseudomodular p is called s-convex. 1-convexr pseudomodular are called conver.
If besides 1) there holds also.

i’ )p(x) = 0 implies x = 0 , then p is called a modular.

b) If p is a pseudomodular in X, then .

X, ={z € X/p(Ax)—0 as A—0} is called a modular space.

c) If p is a convex modular, then ||z[|, = inf{u > 0,p($) < 1} is called the Luzemburg

norm.

Recall that p has the Fatou property if: p(z—y) < liminf p(2, —, ), whenever z,, 2 =
and y,, 2 y.
And we say that p satisfies the Ag-condition if:

p(2z,,)—0 as n— + oo whenever p(x,)—0 as n— + oo, for any sequence (z,)nen in X,.

2 Perturbed integral equation class

In this section, we will study the existence of solution of the following perturbed integral

equation:
u(t) = exp (—tA) fo + /0 exp (5 — 1) A) Tu(s)ds (1)

We present the general hypotheses of the equation (7).

Hy ) Let p be a modular of the Musielak-Orlicz space L¥, convex satisfying the A,-

condition and p,(u) = sup exp (—at)p(u(t)) is a modular of C([0,b], L¥) with a > 0 ( see
te(0,b]

[1]).

H, ) Let A: L¥ — L¥ be a linear application, assume that there exist oy > max(e™!, eb?)
and M > 0 such that p(agAx) < Mp(z) for any x € L¥.

Hs ) Let T: L¥ — L¥ be p — c-Lipschitz with ¢ > 0, i.e there exists k£ > 0 such that
plc(Tx —Ty)) < kp(z — y) for any x,y € L?.

H,y ) Let fo be fixed element in L¥.

Theorem 2.1 Under these conditions Hy — Hy and for all b > 0, the perturbed integral
equation (I) has a solution u € C([0,b], L¥).

Remark.
If we restrict our attention to the Banach space (L%, ||.||,). Then the equation (I) can be

written as follows:
u'(t) + Au(t) = Tu(t) ().

Thus, if A =1 then (%) becomes

u'(t) + (I —T)u(t) = 0.
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But the latter equation has been treated before in [1] and [4]. This let us to reduce the

study to the case A # I when (x) can be written in the form below:
u'(t) + (I = [T+ (I —A)])u(t) = 0.

Set B =1 — A. It follows from the fact that p is not subadditive that 7'+ B is not
necessarily p-Lipschitz contrary to the situation in [1] and [2].

We cite first the theorem below which we shall use in the proof of Theorem 2.1.

Theorem 2.2 . (See [1])

Let X, be a p-complete modular space. Assume that p is an s-convex, satisfying the Aq-
condition and having the Fatou property. Let B be a p-closed subset of X, andT : B — B
a mapping such that

(x) Je,ke RY : e>max(1,k), plc(Tz—Ty)) < k’p(x —y) for any z,y € B.
Then T has a fized point.

Proof of Theorem 2.1.

1%%) step.

We use the following property. Under the hypotheses of Theorem 2.1, the operator A is
continuous from (L%, ||.||,) to itself. Indeed, we have p(agAz) < Mp(z) for any x € L¥.
Let (2, )nen be a sequence in L¥ such that ||z,|, — 0 as n — +o0. So p(z,) — 0 asn —
+o00, which implies that p(agAz,) — 0 as n — +o00. By As-condition, ||agAz,|, — 0 as
n — +o0. Hence ||Az,||, — 0 as n — +o00. Thus, there exists a constant ¢ > 0 such that
|Az||, < c||z]|,, for any x € L?.

+o0o m

Therefore, exp (A)(z) = > —'(x) make a sense.
m

m=0 .

2¢nd) step.

We claim that 2—2 < 7. Indeed, since o > max{e!, eb?} we have:

a) If e7! > eb? then e?b? < 1 therefore ;—z < # < %
b) If eb® > e~! then e*b” > 1 therefore £ < <5 = 1.

b 1 we choose ¢y such that £ < ¢y <+ and ¢ = <.
ag b’ ag b co

Then cogb < 1. Let A > 1 such that 1 < A < ﬁ
We consider S : C([0,b], L¥) — C([0, ], L¥) defined by.
Su(t) = exp (—tA) fo + f3 exp ((s — t)A) Tu(s)ds for any u € C([0,b], L¥). It is clear that
Su(t) € L¥ for each t € [0,b]. As Su is continuous from [0, ] into (L%, ||.||,), then, Su is
p-continuous from [0, b] into (L¥, p). Let u,v € C([0,b], L¥), we have

ASu(t) — Sv(t)) = [y Nexp ((s — t)A) (Tu — Tw)(s)ds . We put Tu — Tv = z.

n—1

Let K = {to,t1,......tn } be any subdivision of [0,¢]. > A(tip1 — &) exp((t; — t)A)z(t;) is
=0

.|| ;-convergent, and consequently, p-convergent to [y Aexp((s —t)A)x(s)ds in L¥ when,

Hence in both cases we have

|K| = sup{|tix1 —t:|,i=0,.....,n —1} — 0 as n — +o00. By Fatou property we have
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p(fi Nexp ((s — t)A)z(s)ds) < liminf p( Y~ Aty — ti) exp ((t; — t)A)z(t;)).

=0
n—1 n—1 1
And Y A(tipr — ti) exp (8 — ) A)x(t;) = D Mtiyr — )COC_ exp ((t; — t)A)x(t;)
i=0 i=0 0
n—1
Moreover Z Ativr —ti)co < Agpb < 1
=0
n—1 — 1
Then p(>_ A(tip1 — t;) exp ((t; —t)A Z tiv1 —t;) CO'O(C_ exp ((t; — t)A)z(t;)).
i=0 =0 0
37 step. In this part, we show that
1 e
Pl exp ((ti = ) A)z(t:) < exp (M = 1)p(x(t:))
X1 (t — tl>m m m
We have - cexp ((ti —t)A)x(t;) = > — AT ((=1)"2(t:))
m—0 €0 m:
400 1 400
And since Z exp(~1) = 1, then p(+ -exp ((t— 1) ) < Z exp (=1) bmAm (t)).
m!

We have ao > e—b > 0, and since ap > max(e~ ebz) then «y > b. Indeed,

i) if e7! > eb?, then e?b? < 1 which implies that eb < 1. Therefore b < e™! < ay.

ii) if eb> > e, then e€%b* > 1 which implies that eb > 1. Therefore eb® > b and ag > b.
From the hypothesis p(agAz(t;)) < Mp(z(t;)),

we have

p(apbA%x(t;))

IN

Mp(bAx(t;))
< Mp(aoAz(i;))
< M?p(a(t:))

Which implies that p(Z0™A™x(t;)) < M™p(x(t;)) < M™p(Zx(t;)) for any m in IN™.
Therefore,

AN

2 exp(— mooe
bl esp (1~ ) Aja(t) < zo%mc—ox(m
= oxp (M = Dp(z(t:))
4" Step. We have
p(A(Su(t) —Sv(t))) < lim inf(2 Mtiyr — ti)coexp (M — Dkp(u — v)(t;))

IA

kXexp (M — 1) lim inf( Z i1 — ti)coexp (at;)) pa(u — v)
=0
¢
= Mkexp (M — 1)/ coexp (as)ds pg(u—v)
0
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therefore

exp (—at)p(A(Su(t) — Sv(t))) < kdexp (M — 1) /Ot coexp (a(s —t))ds po(u —v)

Hence,
Pa(A(su — sv)) < klexp (M — 1)@(1 e pa(u — v).
a

It suffices to take a > ke ~1¢y, then we have Akexp (M —1)%(1 —e ™) < X .
By Theorem 2.2, S has a fixed point which is a solution of the equation (I).

Remark o
In third step, instead of the combination convex Z 6—‘ = 1, we may choose the combi-
m=0 T
0 —lpm
nation convex Z = 1, which gives the conclusion of theorem under the following
hypotheses: "

H), A: L¥ — L¥ is a linear application , and there exists M > 0 such that :
p(Az) < Mp(x) for any = € L¥.

H! T : L¥ — L¥is an application and for oy = % with cob < 1 there exists k& > 0
such that: p(aog(Tz — Ty)) < kp(x — y).

Consider now the following perturbed integral equation.

u(t) = exp (—t) exp (—tA) fo + /Ot exp (s —t)exp ((s —t)A) Tu(s)ds (II).

The same techniques than in the proof of Theorem 2.1 are used to establish Theorem 2.3

below by taking care of the choose of A in (1, =] , which gives

n—1
p(fe Aes~tel=D4g(s)ds) < liminf(Y A(tip1 — t:)e" p(e"D42(t;)) and
- . 1=0
> Atigr — ti)et T < )\/ s < 1.
=0 0

Theorem 2.3 Assume that for a; > eb, there exists M > 0 such that p(a1 Az) < Mp(x)
for any x € L¥ and there exists k > 0 such that p(e(Tz — Ty)) < kp(x —y) for any z,y
in L¥. Then, the perturbed integral equation (1) has a solution u € C([0,b], L¥).

Remark.
By using the same technics as in the proof of Theorem 2.3, we can prove the existence of
a solution of the equation below:

u(t) = o+ [ ols = I Tuls)ds,

where ¢ : R — R is a continuous function satisfying fobgo(—s)ds < 1.

Conclusion

Concerning the equations (I) and (II), Theorem 2.1 and Theorem 2.3 give local solutions
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because of the constraint on b. In this frame, we notice that if A is p-Lipschitz i.e. if

there exists M > 0 such that p(Ax) < Mp(x) for any = € L? | then the equation (I) and

the equation (II) have a solution in [0, 1].

Example of the equation (I).
Let ¢ be a Musielak-Orlicz function on a measurable space ([0, 1], A, i), p, be a modular

defined by
1
polw) = [ (s lu(s)))ds,

for any u € L¥ and ap > max(e™1, eb?), cg € [e— +[. Assume that p,, is convex satisfying
the Ay-condition.

In this example, we study the existence of a solution of the following integral equation

/

t 1
u(t) = exp(—tA) fo —i—/o expl(s — t)A](/O Ki(&u(s))dE)ds (1),

where K7 : [0,1] x L¥ — L¥ is a measurable function satisfying

1))\11%1+ I (€, M (Jy Ki(s,u)ds).£])dE = 0 for any u € L¥.

2) [(Jo (B (& u(s)) — Ki(&,0(s)))dE)]) < k|(u—v)(s)], for any u, v in L?, with k €]0,1[.

fo is a fixed element in LY and the operator A is equal to koI, where [ is the identity

function of L¥ with ky < -+

Let T be a mapping from L¥ into L¥ defined by
1
Tu = / C—OKl(s,u)ds.
0o e

Hence, we have p,(aokor) < agkop,(x) for any x € L?, ie. p(apAx) < agkop(x) for any
x € L?.

Now, we show that 7" is p — =-Lipschitz.

At first, by 1), we have [j ¢(€, \|Tu(€)])d¢é — 0 as A — 0F. Hence, by the definition of
L?, Twue L¥ for any u € L¥.

On the other hand, let =,y € L¥

1

pol (e =Ty) = [ (s, —|(To = Ty).(s) )ds

= [ ots.] / (K6, 2(5)) — K (€, y()d)] s
Therefore, by 2)
bl ST =Ty) < [ (s Hl(z —y)(s))ds

= py(k(u —v))
= kpy(u—v).
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Hence T is p — %-Lipschitz. So by Theorem 2.1 the equation (I') has a solution in
C([0,0], L?).
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